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Abstract

In this paper, we present a new technique for generating error equidistributing meshes
that satisfy both local quasi-uniformity and a preset minimal mesh spacing. This is firstly
done in the one-dimensional case by extending the Kautsky and Nichols method [6] and
then in the two-dimensional case by generalizing the tensor product methods to altern-
ating curved line equidistributions. With the new meshing approach, we have achieved
better accuracy in approximation using interpolatory radial basis functions (RBFs). Fur-
thermore improved accuracy in numerical results have been obtained for a class of linear
and non-homogeneous PDEs solved by the dual reciprocity method (DRM).

1 Introduction
The adaptive mesh algorithms have been widely used in the numerical solution of par-
tial differential equations (PDEs) for boundary value problems [1, 13]. One undesirable
feature of an error equidistributing mesh is that there is no guarantee of it being suffi-
ciently smooth. For our applications of interpolation (using RBFs), the distance between
points becoming too small can imply that the underlying interpolation matrix becomes
ill-conditioned.

In this paper, we propose a method to deal with this problem in Section 2. Essentially
our method consists of modifying the error monitor function in a suitable way and
then equidistributing the new function so that the minimal mesh size constraint can be
satisfied. We deal with the extension of adaptive mesh to two dimensions in Section 3.
Finally, some numerical results will be given in Section 4.

2 An adaptive mesh with minimal mesh size control

In the 1D case, a typical adaptive mesh problem can be stated as follows: given a mesh

(uniform or non-uniform) to, t1 , . . ., t,,, and its corresponding error values (usually es-

timated from the numerical solution using a monitor function [5]) fo, fi, ... , fin, we wish
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to find a new mesh

I :x 0 . Xi, ... , xn, (2.1)

that is locally bounded with respect to a positive constant k > 1 such that 1/k <
hj/hpi- : k,-j = 1, 2,...,n- 1, hj = xj+l - xj, while the errors are equidistributed on
mesh H. One solution to this problem was given in [6] by replacing fj by fj followed by a
standard equidistribution algorithm. fj is referred to as the padded function and the main
idea of replacing fj is increasing the values of the function f, where too small, to prevent
considerably large mesh sizes. We now propose a method of further modifying fj in such
a way that the resulting equidistribution mesh satisfies the preset minimal mesh size
hmi. Before proceeding, we consider replacing the piecewise linear function f(x) (with
endpoint values fj = f(tj)) by another piecewise linear function Z(x) (with endpoint
values Zj - f(xj)). This is a technical approximation to simplify the presentation;
actually the proposed method may work without this step. Note that if we were to
equidistribute Z(x), the resulting mesh would not differ from xj much; define the average
value of the monitor function as

n--1h

d' = d'(Z)= n (Z,+Zj+i) (2.2)
j=0

Our aim now is to modify some Zj values so that the modified average value is the same
as d' while the modified values ensure a preset minimal mesh size hmin is satisfied. To
present our method, we note that insisting on hj >_ hmin implies Zj <Z where

Zhmn = d' (2.3)

and Z is the critical constant to realize hmin. This points a way of modifying those large
values of Zj. However it is not obvious how to ensure the new and modified average
values are the same, i.e. equidistribution is maintained for the same error constant.
Suppose that among the current Zj values, there are M + 1 of them that are larger than
Z (i.e. whose corresponding mesh size is less than hmin); denote these values by Zkj for
j = 0, 1,...,M. This means that Zk. < 2 for j = M + 1, M + 2,..., n. Here the sequence
k0 , ki,. . ., kn represents a permutation of 0,1,2,..., n.

It turns out that a suitable modification (from Zj to Zj) is the following:

(i) 2 k1 =Z when Zkj >Z, i.e. forj =0,1,...,M,

(ii) kj = Zkj + - [ý(Zkj -- )hk] hk. (2.4)
E Zk, =

-I=M+l

for j=M+I,M+2,...,n,

where

f (hk.+hki-l)/2 when k•0O,n,
hki = ho/2 when ki = 0, (2.5)

hn- 1/2 when ki = n.
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For a simple illustration, see the plot of Fig 3b. To prove that the above modification is
suitable, we first present the following result for a simple case.

Theorem 2.1 Let xo, Xl,. .,x, be a non-uniform mesh with the mesh sizes h3 =

xj+l - xj and Zo, Z1 ,..., Z, are the corresponding error values. If the critical constant
value Z as in (2.3), and only one value Z1 > 2 (i.e. M = 1 and all others Zj are less
than or equal to Z), the modification (2.4) takes the following form,{(i) 20 =Zo, 20 =2Z

23 Z + EZj [(Zi - Z)(h0 + hl)/2]/1(hj + hi-l)/2 forj = 2,.3,..., n.
(ii) j = j + i•=2 Zi

Then the average value d = d(2) of the modified values Zj is the same as d' d'(Z) in
(2.2).

Note M = 1 here; in fact the results holds for any one value Zj > Z. Now we are ready
to present the main result on equation (2.4) with regard to minimal mesh size control.

Theorem 2.2 With the error function modified as in (2.4), the new mesh hj resulting
from equidistribution satisfies (i) the average error value remains as d'; (ii) hj >_ hi, .
Here hm,:i cannot be specified to be larger than h = 1/n (the uniform mesh size);
practically we found h,,in E [h2 , h/2] is adequate. Full proofs to these results will be
given in the full version of this paper [10].

In the method in (2.4), the values of Zkj _which are less than but close to Z may
become unnecessarily larger (e.g. larger than Z) and therefore we can propose a further
refinement. We can keep some of the Zk, values which are between Z/2 and Z. In other
words, we only modify the very large and very small values of Z& (see plot of Fig 3b).
Then our theorems are still valid but the proofs may need minor changes. Finally we
summarise our adaptive method with minimal mesh size control as follows (see the plot
of Fig 3b for an illustration).
Algorithm 2.3. (Numerical algorithm) For given non-uniform mesh a = to, ti,...,
tm = b, the error values fo, fl,..., f,,,, values c and h,,in,:
(1) Does the locally bounded mesh algorithm converge to the new mesh a = xo < xi <

". < x, = b which is sub-equidistributing with respect to c and f, that is, for a

sufficiently large value of the integer n such that fb f • nc, and the inequalities

fxlJf • c, j=0,1,...,.-1

are satisfied.
(2) Check the minimal mesh size and compare it with the h,,i,. If it is less than h,,,,

go to the Step 3 otherwise stop.
(3) Approximate the padding values Zj = f(xj) corresponding to the new mesh by using

piecewise linear interpolation of fi values and calculate the average value

d= E(Za + Zj+i-2, where hj = xj+l-x,
j=O
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and Z according to Zhmin = d.
(4) Obtain the decreasing arrangement of Zj, Zkj by ordering them.
(5) Modify the Zk, values as follows,

(i) 2ki=Z when Zk 3 >2,

assuming, that for j = 0, 1, .. .,M Zkj > Z,
(ii) Zk = Zkj when 2/2 < Zkj 2,

assuming, that for j = M + 1, M + 2,., N, Z/2 < Zk < Z,
(iii) 2kj =Zkj + E•NIZkj M

(iii)Zk Zk3 i = k 0[~ (Zkj - Z)hki l/hk3 ,7

for j =N+1,N+2,...,n,

where hki was introduced in (2.5).
(6) Check the modified values 2k, in the stage (iii) of the Step 5. If 2kj <2/2 for all

j, go to Step 7 otherwise repeat Step 5.
(7) Perform the equidistribution procedure for the modified values 2k, and obtain the

new adapting mesh.

3 Extension to two dimensions
The concept of adapting mesh in one dimension is well known (see e.g. [5, 3]). Extension
of this idea to two dimensions is not straightforward. For a given function f(x, y) and
2D domain Q, an obvious extension is dividing the domain Q into some subdomains li

in such a way that

I f f(x,y) =constant. (3.1)

16 16

14 I 14
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FIG. 1. In Fig (a) the monitor values corresponding to the new mesh are represented by

"*', the linear interpolation for these values is shown by i-.' and in Fig (b) the modified

values of the padded function, represented by dash line, are compared with the original
values.



106 Shanazari and Chen

FIG. 2. In Fig (a) equidistribution of slabs in the two coordinate direction and in Fig
(b) three stages of the new method are shown.

But, such a partition is not unique and furthermore satisfying condition (3.1) properly
is not simple. Consequently, this condition has to be replaced. Among the methods
given to satisfy the condition (3.1) as much as possible, two well known methods are
transformation and dimension reduction. Transformation methods are based on mapping
the physical domain into a simple domain with a uniform mesh and ultimately applying
the equidistribution condition to obtain an adapting mesh in the physical domain [4, 12].
These methods are generally costly and complicated in theory. In this work we first
consider the latter method which is easier and cheaper than the former method. We
then present a new technique to generate a 2D mesh.

3.1 Dimensions reduction

We assume that 9 is a rectangle in the form Q = {(x,y), a < x < b, c < y _ d}. A
simple idea is to produce the mesh,

a x X1 <x ... < X-1 < Xn = b,

c = yo < y < <... yi < y. = d,

such that
+~i1 fYr

0 fX(x,y) dydx = constant, (3.2)

and

j Yj 

o
yj jX' fV(x, y) dxdy = constant, (3.3)

where fx(x, y) and fy(x, y) are the monitors in the x and y directions respectively (see
Fig 3.1a). Obviously the generated mesh by this method is much different from an
equi-distributing mesh that one expects from (3.1). Another method which leads to a
non-rectangular grid is dimensional splitting 111]. We now describe a new method of
type dimension reduction.
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FIG. 3. In Fig (a) the mesh generated by the new method for function in (3.6) and in
Fig (b) the resulting mesh when restricting the minimal mesh size as hmin = h/2 for
the same function are shown.

3.2 A new approach for a 2D mesh

The idea is based on the tensor product method and therefore a non-rectangular grid.
We start with a uniform mesh in a rectangular region Q and perform the method in
three stages. In the first stage, the error equidistributing is performed for each line in
the horizontal direction (see the first part of Fig 3.1b), that is,

j f(x, Yi)dx = constant for i = 0, 1,..., m. (3.4)

In the next stage, the mesh is redistributed in the vertical direction along the new grid
lines (see the second part of Fig 3.1b), that is,

+ fy(xj, y) dy = constant for j = 0, 1,..., n, (3.5)
is

where Si+l - si is the distance between two consecutive points (xj, yi) and (xj, yi+i)

along the new lines. In the final stage, equidistributing is repeated in the horizontal
direction along the grid lines (the last part of Fig 3.1b). One can observe that repeating
this procedure usually leads to a convergent mesh. According to our experiments, the
number of iterations to achieve convergence is at most five. The resulting mesh by this
procedure for function

u(x,y) - e(4-x2-4y2) 2  (3.6)

when applying the arc-length monitor is shown in Figure 3a. The idea of controlling
the mesh size can also be applied in this technique. The generated mesh for the same
function when the mesh sizes are restricted to hmi -- h/2, where h is the mesh size in
the case of uniform mesh, is given in Figure 3b.

4 Numerical examples
In this part the affect of adapting the mesh on the accuracy of interpolation and the DRM
is considered. In the following examples, the infinity norm has been used to measure the
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FIG. 4. The resulting mesh when using the new method for function in Examples 1 and
2 are shown in Figures (a) and (b) respectively.

Method stage Function (El) Derivative Function (E2) Derivative
uniform mesh - 5.1E-2 9.5E-1 1.3E-2 2.2E-1

Adaptive mesh first 5.4E-3 1.6E-1 2.5E-3 1.3E-2
with control second 5.4E-3 3.OE-1 2.1E-3 1.OE-1

third 3.8E-3 3.OE-1 3.7E-3 1.OE-1
Adaptive mesh first 1.4E-2 9.9E-2 2.5E-3 1.5-2
without control second 2.2E-2 7.5E-1 2.1E-3 1.OE-1

third 1.8E-2 6.OE-1 4.5E-3 1.2E-1

TAB. 1. The interpolation error for Examples 1 - 2 using adaptive mesh with and
without control the mesh sizes.

accuracy, that is, if u and ii are the exact and approximate values respectively then the
error is calculated as

S= Ilu(x) - U(x) = max In(x) -
xE D

A polynomial RBF, 1 + r 3 , has been employed in this work.

Example 4.1 We check the interpolation in terms of the RBFs for the function,

u(x, y) = (1 - e3 x- 3) sin(1.5 7r y), (4.1)

in a rectangular domain. The generated mesh for this function is shown in Figure 4a.

Table 4 shows the affect of adapting mesh on the interpolation accuracy with and without
controlling the mesh sizes. As one can observe, using the adapting mesh considerably
improves the accuracy in comparison with the case of uniform mesh. Moreover, the result
in the case of controlling the minimal mesh size is better.
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Example 4.2 In this example we first check the function f 2 (x, y) = 0.5-0.5 tanh(-4+
16x 2 + 16y 2 ) and then solve the linear PDE: 7 2 u + y1L + + yu=d, with theax a y+xy =dwtth

Dirichlet boundary condition over the elliptic domain x 2 + 4y 2 = 4, where d is a known
function such that the exact solution is u(x, y) = f 2 (x, y).

Again from Table 4, we see improved approximation. We apply the DRM method [7] for
solution, where the domain integrals are approximated by using RBF interpolation. The
adaptive mesh for this function is given in Fig. 4b and has been observed to give rise to
improved DRM solution.

5 Conclusions
We considered a new algorithm for producing a locally bounded mesh with a preset
minimal mesh size. Such a mesh is used to overcome the ill-conditioning problems asso-
ciated with radial basis function interpolation. Extension of the idea to the 2D case is
also considered. Some preliminary and improved numerical results are given.
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